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Abstract

The cross section for tt production in the all-jets final state is measured in pp collisions
at a centre-of-mass energy of 8 TeV at the LHC with the CMS detector, in data corre-
sponding to an integrated luminosity of 18.4 fb−1. The inclusive cross section is found
to be 275.6± 6.1 (stat)± 37.8 (syst)± 7.2 (lumi) pb. The normalized differential cross
sections are measured as a function of the top quark transverse momenta, pT, and
compared to predictions from quantum chromodynamics. The results are reported at
detector, parton, and particle levels. In all cases, the measured top quark pT spectra
are significantly softer than theoretical predictions.
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1 Introduction
The top quark is an important component of the standard model (SM), especially because of
its large mass, and its properties are critical for the overall understanding of the theory. Mea-
surements of the top quark-antiquark pair (tt) production cross section test the predictions of
quantum chromodynamics (QCD), constrain QCD parameters, and are sensitive to physics be-
yond the SM. The tt process is also the dominant SM background to many searches for new
physical phenomena, and its precise measurement is essential for claiming new discoveries.

The copious top quark data samples produced at the CERN LHC enable measurements of the
tt production rate in extended parts of the phase space, and differentially as a function of the
kinematic properties of the tt system. Inclusive and differential measurements from proton-
proton (pp) collisions at centre-of-mass energies of 7 and 8 TeV have been reported by the AT-
LAS [1–11] and CMS collaborations [12–24]. These are significantly more precise than the mea-
surements of tt production in proton-antiproton collisions performed at the Tevatron [25]. In
this paper, we report new results from pp collision data at

√
s = 8 TeV, collected with the CMS

detector. Measurements of the tt inclusive cross section and the normalized differential cross
sections are presented for the all-jets final state. The results are compared to QCD predictions,
and are in agreement with other measurements in different decay channels.

Top quarks decay almost exclusively into a W boson and a b quark. Events in which both W
bosons from the tt decay produce a pair of light quarks constitute the so-called all-jets chan-
nel. As a result, the final state consists of at least six partons (more are possible from initial-
and final-state radiation), two of which are b quarks. Despite the large number of combina-
torial possibilities, it is possible to fully reconstruct the kinematical properties of the tt decay
products, unlike in the leptonic channels where the presence of one or two neutrinos makes
the full event interpretation ambiguous. However, the presence of a large background from
multijet production, and the larger number of jets in the final state make the measurement of
the tt cross section in the all-jets final state more uncertain compared to the leptonic channels.
Nevertheless, the abundance of tt events and the use of improved jet reconstruction methods
allow the choice of selection criteria that lead to a high-purity signal sample increasing sig-
nificantly the signal-over-background ratio compared to previous measurements in this decay
channel [21, 26, 27].

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and
strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator
hadron calorimeter. Extensive forward calorimetry (pseudorapidity |η| > 3.0) complements
the coverage provided by the barrel (|η| < 1.3) and endcap (1.3 < |η| < 3.0) detectors. Muons
are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the
solenoid. The first level of the CMS trigger system, composed of custom hardware processors,
uses information from the calorimeters and muon detectors to select the most interesting events
in a fixed time interval of less than 4 µs. The high-level trigger (HLT) processor farm further
decreases the event rate from around 100 kHz to around 300 Hz, before data storage. A detailed
description of the CMS apparatus, together with the definition of the coordinate system used
and the relevant kinematic variables, can be found in Ref. [28].
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3 Event simulation
The tt events are simulated using the leading-order (LO) MADGRAPH (v. 5.1.5.11) event gen-
erator [29], which incorporates spin correlations through the MADSPIN [30] package and the
simulation of up to three additional partons. The value of the top quark mass is set to
mt = 172.5 GeV and the proton structure is described by the parton distribution functions
(PDFs) from CTEQ6L1 [31]. The generated events are subsequently processed with PYTHIA

(v. 6.426) [32] which utilizes tune Z2* for parton showering and hadronization, and the MLM
prescription [33] is used for matching of matrix element jets to those from parton shower. The
PYTHIA Z2* tune is derived from the Z1* tune [34], which uses the CTEQ5L PDF [31], whereas
Z2* adopts CTEQ6L [31]. The CMS detector response is simulated using GEANT4 (v. 9.4) [35].

In addition to the MADGRAPH simulation, predictions obtained with the next-to-leading-order
(NLO) generators MC@NLO (v. 3.41) [36] and POWHEG (v. 1.0 r1380) [37] are also compared to
the measurements. While POWHEG and MC@NLO are formally equivalent up to NLO accuracy,
they differ in the techniques used to avoid double counting of the radiative corrections when
interfacing with the parton shower generators. Two different POWHEG samples are used: one
uses PYTHIA and the other HERWIG (v. 6.520) [38] for parton showering and hadronization. The
events generated with MC@NLO are interfaced with HERWIG. The HERWIG AUET2 tune [39] is
used to model the underlying event in the POWHEG+HERWIG sample, while the default tune
is used in the MC@NLO+HERWIG sample. The proton structure is described by the PDF sets
CT10 [40] and CTEQ6M [31] for POWHEG and MC@NLO, respectively. The QCD multijet events
are simulated using MADGRAPH (v. 5.1.3.2) interfaced with PYTHIA (v. 6.424).

4 Event reconstruction and selection
4.1 Jet reconstruction

Jets are reconstructed with the anti-kT clustering algorithm [41, 42] with a distance parameter
of 0.5. In the offline analysis particle candidates are reconstructed with the particle-flow (PF)
algorithm [43, 44]. In the PF event reconstruction all stable particles in the event, i.e. electrons,
muons, photons, and charged and neutral hadrons, are reconstructed as PF candidates using a
combination of all of the subdetector information to obtain an optimal determination of their
directions, energies, and types. The PF candidates are then clustered to reconstruct the jets. All
the reconstructed vertices in the event are ordered according to the sum of squared transverse
momenta (pT) of tracks used to reconstruct it and the vertex with the largest sum is considered
the primary one, while all the rest are considered as pileup vertices. In order to mitigate the
effect of multiple interactions in the same bunch crossing (pileup), charged PF candidates that
are unambiguously associated with pileup vertices are removed prior to the jet clustering. This
procedure is called charged-hadron subtraction (CHS) [45]. An offset correction is applied for
the additional energy inside of the jet due to neutral hadrons or photons from pileup. The
resulting PF jets require a small residual energy correction, mostly due to the thresholds for
reconstructed tracks and clusters in the PF algorithm and reconstruction inefficiencies [45].

The identification of jets that likely originate from the hadronization of b quarks is done with
the “combined secondary vertex” (CSV) b tagger [46]. The CSV algorithm combines the infor-
mation from track impact parameters and identified secondary vertices within a given jet, and
provides a continuous discriminator output.
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4.2 Trigger

The data used for this measurement were collected with a multijet trigger event selection (path)
which, from the HLT, required at least four jets reconstructed from calorimetric information
with a pT threshold of 50 GeV and |η| < 3.0. The hardware trigger required the presence of two
central (|η| < 3.0) jets above various pT thresholds (52–64 GeV), or the presence of four central
jets with lower pT thresholds (32–40 GeV), or the scalar sum of all jets pT to be greater than 125
or 175 GeV. The various thresholds were adjusted within the quoted ranges according to the
instantaneous luminosity. The trigger paths employed were unprescaled for a larger part of the
run, yielding a data sample corresponding to an integrated luminosity of 18.4 fb−1.

4.3 Selection and kinematic top quark pair reconstruction

Selected events are required to contain at least six reconstructed jets with pT > 40 GeV and
|η| < 2.4 (jets are required to be within the tracker acceptance in order to apply the CHS), with
at least four of the jets having pT > 60 GeV (so that the trigger efficiency is greater than 80%
and the data-to-simulation correction factor smaller than 10%). Among the six jets with the
highest pT (leading jets), at least two must be identified as coming from b hadronization by
the CSV algorithm at the medium working point (CSVM), with a typical b quark identifica-
tion efficiency of 70% and misidentification probability for light quarks of 1.4%, and these are
considered the most probable b jet candidates. If there are more than two such jets then the
two with the highest pT are chosen. To select events compatible with the tt hypothesis, and to
improve the resolution of the reconstructed quantities, a kinematic fit is performed that utilizes
the constraints of the tt decay. A χ2 fit is performed, starting with the reconstructed jet four-
momenta, which are varied within their experimental pT and angular resolutions, imposing a
W boson mass constraint (80.4 GeV [47]) on the light-quark pairs, and requiring that the top
quark and antiquark have equal mass. Out of all the possible combinations from the six input
jets, the algorithm returns the one with the smallest χ2 and the resulting parton four momenta,
which are used to compute the reconstructed top quark mass (mrec

t ). The probability of the
kinematic fit is required to be greater than 0.15. The distance in the η–φ space between the two

b quark candidates must be ∆Rbb =
√
(∆ηbb)

2 + (∆φbb)
2 > 2.0. The last two requirements are

applied to select events with unambiguous top quark pair interpretation and to suppress the
QCD background that originates from gluon splitting into collinear b quarks [48].

5 Signal extraction
The background to the tt signal is dominated by the QCD multijet production process, while
the other backgrounds, such as the associated production of vector bosons with jets, are negli-
gible. Due to the limited size of the Monte Carlo (MC) simulated samples, the background is
determined directly from the data. A QCD-dominated event sample is selected with the trigger
and offline requirements described in Section 4.3 and requiring zero CSVM b tagged jets. In
these events the most probable b quark candidates are determined by the kinematic fit. The
resulting sample contains a negligible fraction of tt events (< 1%) and is treated exactly like the
signal sample. After applying the ∆Rbb > 2.0 and the fit probability requirements, the recon-
structed top-like kinematic properties of events with no b jet are very similar to those with two
b jets (confirmed using simulated QCD events). We use this QCD-dominated control sample
to extract the shape (templates) of the various kinematic observables. The number of tt events
(signal yield) is extracted from a template fit of mrec

t to the data using parametrized shapes for
signal and background distributions, where the signal shape is taken from the tt simulation
and the QCD shape is taken from the control data sample described above. The background
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and signal yields are determined via a maximum likelihood fit to the mrec
t distribution and are

used to normalize the corresponding samples. Figures 1 and 2 show the fitted mass and the
kinematic fit probability and ∆Rbb distributions. The pT distribution of the six leading jets is
shown in Fig. 3. From the output of the kinematic fit one can reconstruct the two top quark
candidates, whose pT are shown in Fig. 4, and the properties of the tt system (pT, rapidity y)
are shown in Fig. 5. Overall, the data sample is dominated by signal events, and the data are in
agreement with the fit results. The jet pT spectra in data appear to be systematically softer than
in the simulation, in agreement with the observations in Ref. [24], related to a softer measured
top quark pT spectrum.
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Figure 1: Distribution of the reconstructed top quark mass after the kinematic fit. The normal-
izations of the tt signal and the QCD multijet background are taken from the template fit to the
data. The bottom panel shows the fractional difference between the data and the sum of signal
and background predictions, with the shaded band representing the MC statistical uncertainty.

6 Systematic uncertainties
The measurement of the tt cross section is affected by several sources of systematic uncertainty,
both experimental and theoretical, which are summarized below. The quoted values refer to
the inclusive measurement, with small variations observed in the bins of the differential mea-
surement presented in Section 7.2.

• Background modeling: the QCD mrec
t template shape derived from the data control

sample is varied according to the uncertainty of the method evaluated with simu-
lated events, which impacts the extracted signal yield moderately (4.9%).

• Trigger efficiency: the efficiency of the trigger path is taken from the simulation
and corrected with an event-by-event scale factor (SFtrig), calculated from data in-
dependent samples, that depends on the fourth jet pT. In the phase space of the
measurement, the SFtrig is greater than 0.83 and on average 0.96. The associated un-
certainty is conservatively defined as (1− SFtrig)/2 and has a small impact (2.0%)
on the cross section.

• Jet energy scale and resolution: the jet energy scale (JES) and jet resolution (JER)
uncertainties have significant impacts on the measured cross section due to the rel-



5
E

ve
nt

s 
/ 0

.0
1 

20

40

60

80

100

120

140

160

180 Data
Signal
QCD
MC unc.

 (8 TeV)-118.4 fbCMS

Kinematic fit probability
0.2 0.4 0.6 0.8 1D

at
a/

(S
+

B
)-

1

-0.5
0

0.5

E
ve

nt
s 

/ 0
.0

4 

20
40
60
80

100
120
140
160
180
200
220 Data

Signal
QCD
MC unc.

 (8 TeV)-118.4 fbCMS

bbR∆
2 3 4D

at
a/

(S
+

B
)-

1

-0.5
0

0.5

Figure 2: Distribution of the kinematic fit probability (left). Distribution of the distance between
the reconstructed b partons at the η–φ plane (right). The normalization of the tt signal and the
QCD multijet background are taken from the template fit to the data. The bottom panels show
the fractional difference between the data and the sum of signal and background predictions,
with the shaded band representing the MC statistical uncertainty.

atively high pT requirements on the fourth and sixth of the leading jets. In the sim-
ulated events, jets are shifted (smeared) according to the pT- and η-dependent JES
(JER) uncertainty, prior to the kinematic fit, and the full event interpretation is re-
peated. The JES (JER) has a dominant (small) effect on the cross section measurement
of 7.0% (3.5%). In addition, the JES/JER uncertainties affect the signal template, with
a negligible impact (≈1%) on the cross section measurement.

• b tagging: the performance of the b tagger has a dominant effect on the signal
acceptance because the selected events are required to have at least two jets satis-
fying the CSVM requirement. An event-by-event scale factor (SFbtag) is applied to
the simulation, which accounts for the discrepancies between data and simulation
in the efficiency of tagging true b jets and in the misidentification rate [46]. The av-
erage value of SFbtag is 0.99. The uncertainty in the SFbtag is taken into account by
weighting each event with the shifted value of SFbtag which results in a cross section
uncertainty of 7.3%. This is the leading systematic uncertainty.

• Integrated luminosity: the uncertainty on the integrated luminosity is estimated to
be 2.6% [49].

• Matching partons to showers: the impact of the choice of the scale that separates the
description of jet production via matrix elements or parton shower in MADGRAPH

is studied by changing its reference value of 20 to 40 and 10 GeV, resulting in an
asymmetric effect of −4.2, +2.4% on the cross section.

• Renormalization and factorization scales: the uncertainty in modelling of the
hard-production process is assessed through changes in the renormalization and
factorization scales in the MADGRAPH sample by factors of two and half, relative
to their common nominal value, which is set to the Q of the hard process. In MAD-
GRAPH, Q is defined by Q2 = m2

t + Σp2
T, where the sum is over all additional final

state partons in the matrix element calculations. The effect on the measured cross
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Figure 3: Distribution of the pT of the six leading jets. The normalization of the tt signal and the
QCD multijet background are taken from the template fit to the data. The bottom panels show
the fractional difference between the data and the sum of signal and background predictions,
with the shaded band representing the MC statistical uncertainty.
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Figure 4: Distribution of the leading (left) and subleading (right) reconstructed top quark pT.
The normalizations of the tt signal and the QCD multijet background are taken from the tem-
plate fit to the data. The bottom panels show the fractional difference between the data and
the sum of signal and background predictions, with the shaded band representing the MC
statistical uncertainty.

section is moderate and asymmetric (−0.5, +3.8%).

• Parton distribution functions: following the PDF4LHC prescription [50, 51], the
uncertainty on the cross section is estimated to be 1.5%, taking the largest deviation
on the signal acceptance from all the considered PDF eigenvectors.

• Non-perturbative QCD: the impact of non-perturbative QCD effects is estimated
by studying various tunes of the PYTHIA shower model that predict different under-
lying event (UE) activity and strength of the color reconnection (CR), namely, the
Perugia 2011, Perugia 2011 mpiHi, and Perugia 2011 Tevatron tunes, described in
Ref. [52], were used. The effect on the measured cross section is moderate: 4.4% for
the UE and 1.4% for the CR.

• Hadronization model: the effect of the hadronization model on the signal effi-
ciency is estimated by comparing the predictions from the MC@NLO +HERWIG and
POWHEG +PYTHIA simulations, and it amounts to 2%.

7 Results
7.1 Inclusive cross section

The signal yield (Ntt), extracted as described in Section 5, is used to compute the inclusive tt
production cross section, according to the formula

σtt =
Ntt

(Aε) L , (1)

where (A ε) is the simulated signal acceptance times efficiency in the measurement phase space
(≈0.7%) corrected event-by-event with the trigger and b tagging efficiency scale factors and L
is the integrated luminosity. The fitted signal amounts to 3416± 79 events. Taking into account
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Figure 5: Distribution of the pT (left) and the rapidity (right) of the reconstructed top quark
pair. The normalizations of the tt signal and the QCD multijet background are taken from the
template fit to the data. The bottom panels show the fractional difference between the data
and the sum of signal and background predictions, with the shaded band representing the MC
statistical uncertainty.

Table 1: Fractional uncertainties in the inclusive tt production cross section.

Source
Background modeling ±4.9%
JES −7.0, +6.8%
JER ±3.5%
b tagging ±7.3%
Trigger efficiency −2.2, +2.0%
Underlying event ±4.4%
Matching partons to showers −4.2, +2.4%
Factorization and renormalization scales −0.5, +3.8%
Color reconnection ±1.4%
Parton distribution function ±1.5%
Hadronization ±2.0%
Total systematic uncertainty −13.7, +13.7%
Statistical uncertainty ±2.3%
Integrated luminosity ±2.6%

the systematic uncertainties discussed in Section 6, the measured cross section is

σtt = 275.6± 6.1 (stat)± 37.8 (syst)± 7.2 (lumi) pb. (2)

The precision of the measured inclusive cross section is dominated by the systematic uncer-
tainties, and in particular by those related to JES and b tagging.

In order to parametrize the dependence of the result on the top quark mass assumption, the
measurement was repeated using signal simulated samples with different generated top quark
masses (167.5 and 175.5 GeV). The choice of the generated mass affects both the extracted signal
yield and the signal efficiency. The quadratic interpolation of the measurements with the three
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different top quark mass is

σtt(mt)

σtt(mt = 172.5)
= 1.0− 2.4× 10−2 (mt − 172.5) + 8.3× 10−4 (mt − 172.5)2 . (3)

7.2 Differential cross sections

The size of the signal sample allows the differential measurement of the tt production cross
section to be performed as a function of various observables. In order to confront the theoretical
predictions, the differential cross sections are reported normalized to the inclusive cross section,
resulting in a significant cancellation of systematic uncertainties.

The process of measuring the differential cross sections is identical to the inclusive case: in each
bin of the observable used to divide the phase space, the signal is extracted from a template fit
to the reconstructed top quark mass. Besides the physics interest, the choice of the observ-
ables used is mainly motivated by their correlation to mrec

t , and the ability to extract smooth
signal and background templates. The variables chosen are the pT of the two reconstructed top
quarks. Figure 6 shows the fitted mrec

t distributions in bins of the pT of the leading top quark.

The differential measurements are first reported for the visible fiducial volume, as a function
of the reconstructed top pT (detector level), and then extrapolated to the parton and particle
levels. The detector-level result is shown in Fig. 7 and is free of most of the systematic uncer-
tainties affecting the inclusive measurement. The corresponding numerical values are reported
in Table 2.

The parton-level results shown in Fig. 8 are obtained from the detector-level measurement,
after correcting for bin migration effects and extrapolating to the full phase space using a bin-
by-bin acceptance correction. The unfolding of the bin-migration effect is performed with the
D’Agostini method [53], implemented in the RooUnfold package [54], using the migration ma-
trix derived from the simulation. The uncertainty due to the modeling of the migration matrix
and the phase-space extrapolation is estimated by repeating the unfolding and acceptance-
correction procedures by varying the systematic sources described in Section 6. The numerical
values of the normalized differential cross sections at parton level are reported in Table 3. It
should be noted that there is a large extrapolation factor involved from the detector-level jets
(0.7% of the signal) to the full parton level, which results in large theoretical uncertainties.

In addition to the parton level, results are reported at particle level, in Fig. 9, in a phase space
similar to the detector level by construction. This is defined as follows: first, particle jets are
built in simulation from all stable particles (including neutrinos) with the same jet clustering
algorithm as the detector jets. Then, starting from the six leading jets, the jets associated with
B hadrons via matching in η-φ (∆R < 0.25) are identified as the b jet candidates. Events are
further selected if p4th jet

T > 60 GeV and p6th jet
T > 40 GeV and if there are at least two b jets with

∆Rbb > 2.0. For the selected events, a “pseudo top quark” is reconstructed from one b jet and
the two closest non-b-tagged jets. The particle-level results are obtained in a similar way to the
parton level, via unfolding and acceptance correction. The numerical values of the normalized
differential cross sections at particle level are reported in Table 4.

The comparison of the measured and predicted differential top quark pT shapes reveals that the
models predict a harder spectrum, both in the leading and in the subleading top quark pT, in the
phase space of the measurement. This effect is also reflected on the jet pT distributions shown in
Fig. 3. The POWHEG +HERWIG prediction is the closest to the data, but still shows a significant
discrepancy. The parton-level results are accompanied by sizeable systematic uncertainties,
dominated by the theoretical uncertainties due to the extrapolation to the full phase space. In
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contrast, the particle-level phase space is much closer to the visible one, and as a result the
extrapolation uncertainties are smaller.

Table 2: Normalized differential tt cross section as a function of the pT of the leading (p(1)T ) and
subleading (p(2)T ) top quarks or antiquarks. The results are presented at detector level in the
visible phase space.

pT bin range (GeV) 1
σ dσdp(1)T (GeV−1) stat (%) syst (%)

[0, 150] 1.72× 10−3 ±6.7 ±3.7
[150, 225] 4.51× 10−3 ±3.7 ±2.0
[225, 300] 3.41× 10−3 ±3.9 ±1.8
[300, 375] 1.60× 10−3 ±5.3 ±1.6
[375, 500] 2.33× 10−4 ±10.4 ±1.7

pT bin range (GeV) 1
σ dσdp(2)T (GeV−1) stat (%) syst (%)

[0, 150] 2.59× 10−3 ±3.9 ±3.3
[150, 225] 4.39× 10−3 ±3.4 ±1.9
[225, 300] 2.71× 10−3 ±4.1 ±1.9
[300, 375] 8.64× 10−4 ±7.0 ±1.8
[375, 500] 1.01× 10−4 ±15.2 ±1.7

8 Summary
A measurement of the tt production cross section has been performed in the all-jets final state,
using pp collision data at

√
s = 8 TeV corresponding to an integrated luminosity of 18.4 fb−1.

The measured inclusive cross section is 275.6± 6.1 (stat)± 37.8 (syst)± 7.2 (lumi) pb for a top
quark mass of 172.5 GeV, in agreement with the standard model prediction of 234+10

−7 ± 12 pb
for mt = 173 GeV [55]. Also reported are the fiducial normalized differential cross sections
as a function of the leading and subleading top quark pT. Compared to QCD predictions,
the measurement shows a significantly softer top quark pT spectrum. The differential cross
sections are also extrapolated to the full partonic phase space, as well as to particle level, and
can be used to tune Monte Carlo models.
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leading (left) and subleading (right) reconstructed top quark pT (detector level). The bottom
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Table 3: Normalized differential tt cross section as a function of the pT of the leading (p(1)T ) and
subleading (p(2)T ) top quarks or antiquarks. The results are presented at parton level in the full
phase space.

pT bin range (GeV) 1
σ dσdp(1)T (GeV−1) stat (%) exp. syst (%) theo. syst (%)

[0, 150] 6.72× 10−3 ±10.8 −3.7,+4.1 −9.7,+14.8
[150, 225] 3.27× 10−3 ±4.3 −2.0,+1.8 −9.0,+2.5
[225, 300] 8.73× 10−4 ±5.0 −0.8,+1.2 −9.3,+4.9
[300, 375] 2.70× 10−4 ±7.1 −2.3,+2.7 −7.5,+9.9
[375, 500] 5.88× 10−5 ±15.2 −3.3,+1.9 −29.4,+9.0

pT bin range (GeV) 1
σ dσdp(2)T (GeV−1) stat (%) exp. syst (%) theo. syst (%)

[0, 150] 7.59× 10−3 ±6.2 −2.5,+2.7 −7.6,+8.1
[150, 225] 1.73× 10−3 ±4.4 −1.3,+0.7 −10.5,+4.7
[225, 300] 4.12× 10−4 ±5.6 −1.8,+2.2 −15.7,+6.2
[300, 375] 9.11× 10−5 ±9.7 −1.9,+3.3 −18.1,+7.0
[375, 500] 2.30× 10−5 ±21.4 −5.6,+2.0 −15.0,+4.7
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difference between various MC predictions and the data. Statistical uncertainties are shown
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Table 4: Normalized differential tt cross section as a function of the pT of the leading (p(1)T ) and
subleading (p(2)T ) top quarks or antiquarks. The results are presented at particle level.

pT bin range (GeV) 1
σ dσdp(1)T (GeV−1) stat (%) exp. syst (%) theo. syst (%)
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J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén,
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Y. Kuessel, A. Künsken, J. Lingemann2, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone,
O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, I. Asin, N. Bartosik, O. Behnke, U. Behrens, A.J. Bell, K. Borras18,
A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez
Pardos, G. Dolinska, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke,
E. Gallo19, J. Garay Garcia, A. Geiser, A. Gizhko, P. Gunnellini, J. Hauk, M. Hempel20, H. Jung,
A. Kalogeropoulos, O. Karacheban20, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, I. Korol,
W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann20, R. Mankel, I. Marfin20, I.-A. Melzer-
Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak,



22 A The CMS Collaboration

E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.Ö. Sahin, P. Saxena,
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M. Akbiyik, C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, F. Colombo, W. De Boer,
A. Descroix, A. Dierlamm, S. Fink, F. Frensch, M. Giffels, A. Gilbert, F. Hartmann2, S.M. Heindl,
U. Husemann, I. Katkov6, A. Kornmayer2, P. Lobelle Pardo, B. Maier, H. Mildner, M.U. Mozer,
T. Müller, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, S. Röcker, F. Roscher, H.J. Simonis,
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Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi,
Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas,
A. Psallidas, I. Topsis-Giotis

University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

University of Ioánnina, Ioánnina, Greece
I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos,
E. Paradas, J. Strologas

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, A. Hazi, P. Hidas, D. Horvath21, F. Sikler, V. Veszpremi, G. Vesztergombi22,
A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi23, J. Molnar, Z. Szillasi

University of Debrecen, Debrecen, Hungary
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A. Braghieria, A. Magnania, P. Montagnaa,b, S.P. Rattia,b, V. Rea, C. Riccardia ,b, P. Salvinia, I. Vaia,
P. Vituloa ,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
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